nLSALog: An Anomaly Detection Framework for Log Sequence in Security Management

For the security defense in the current Intelligent Transportation System (ITS), malware is often used as the security analysis data source, but only the michael harris ii headband known attack type can be detected.A general anomaly detection framework is proposed, using log data as the analysis data source.By modeling the log template sequence as a natural language sequence and using the stacked orly happy camper Long Short-Term Memory (LSTM) with self-attention mechanism, the framework can effectively extract the hidden pattern of the log template sequence, and well express the dependencies inside the log template sequence.

The experimental results show that the overall accuracy of log sequence anomaly detection of the detection framework is better than that of existing methods and the time cost is lower.

Leave a Reply

Your email address will not be published. Required fields are marked *